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ABSTRACT

PURPOSE With the aid of ever-increasing computing resources, many deep learning
algorithms have been proposed to aid in diagnostic workup for clinicians.
However, existing studies usually selected informative patches from whole-
slide images for the training of the deep learning model, requiring labor-
intensive labeling efforts. This work aimed to improve diagnostic accuracy
through the statistic features extracted from hematoxylin and eosin-stained
slides.

METHODS We designed a computational pipeline for the diagnosis of inverted urothelial
papilloma (IUP) of the bladder from its cancer mimics using statistical features
automatically extracted fromwhole-slide images.Whole-slide images from225
cases of common and uncommon urothelial lesions (64 IUPs; 69 inverted
urothelial carcinomas [UCInvs], and 92 low-grade urothelial carcinoma
[UCLG]) were analyzed.

RESULTS We identified 68 image features in total that were significantly different be-
tween IUP and UCInv and 42 image features significantly different between IUP
andUCLG. Ourmethod integratedmultiple types of image features and achieved
high AUCs (the AUCs) of 0.913 and 0.920 for classifying IUP from UCInv and
conventional UC, respectively. Moreover, we constructed an ensemble classifier
to test the prediction accuracy of IUP from an external validation cohort, which
provided a new workflow to diagnose rare cancer subtypes and test the models
with limited validation samples.

CONCLUSION Our data suggest that the proposed computational pipeline can robustly and
accurately capture histopathologic differences between IUP and other UC
subtypes. The proposed workflow and related findings have the potential to
expand the clinician’s armamentarium for accurate diagnosis of urothelial
malignancies and other rare tumors.

INTRODUCTION

It is estimated that bladder cancer accounts for approxi-
mately 84,870 new cases and 17,420 deaths in the
United States in 2025.1 Inverted urothelial papilloma (IUP)
is an uncommon benign urothelial neoplasm.2,3 It is diag-
nostically challenging to distinguish IUP from other bladder
tumors, especially inverted variant of urothelial carcinoma
(UC), namely, inverted noninvasive urothelial carcinoma
(UCInv) and low-grade noninvasive urothelial carcinoma
(UCLG).4-6 Recently, aided by the advances in digitized
microscopic imaging and machine learning technology,
many computational systems have been built for various
histopathology tasks.7-11 For instance, transfer learning, a

machine learning technique, has been applied to quantify
histopathologic patterns across 17,355 hematoxylin and
eosin (H&E) histopathology images with matched genomic
and survival data.12 Notably, Campanella et al13 reported a
clinical-grade computational pathology framework that
was evaluated on a data set of 44,732 whole-slide patho-
logic images. Moreover, Coudray et al14 proposed a com-
putational pipeline for the classification between lung
adenocarcinoma and lung squamous cell carcinoma and
Cheng et al implemented a machine learning pipeline for
diagnosing the rare TFE3 Xp11.2 translocation renal cell
carcinoma.15 These studies demonstrated the efficacy of
computational pathology in the precise diagnosis of human
cancers.
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Although much progress has been achieved, most of the
existing studies are based on the deep learning technology
requiring amounts of annotated images to achieve satis-
factory results. In the case of IUP, the sample rarity may
severely affect the success of a deep learning approach to this
disease. On the basis of the above consideration, we
implemented an automated workflow that calculated 160
objective features from the histopathologic images. The
image features were extracted from the whole slides, which
covered not only a large tumor area but also a wide spectrum
of cell nucleus morphologies, including nucleus size, tex-
ture, shape, and density from the heterogeneous cancer
tissue that can help characterize the significant differences
between IUP and other types of UC. Specifically, we designed
a fully automated pipeline to extract and combine multiple
types of statistic descriptors (ie, morphology, topology, and
texture features) and built classifiers to distinguish IUP from
UCLG and UCInv. We demonstrated that the proposed
pipeline can accurately distinguish IUP from UCInv and
UCLG. Moreover, we constructed an ensemble classifier to
test the prediction accuracy of IUP from an external vali-
dation cohort, which provided a new workflow to diagnose
rare cancer subtypes and test the models with limited val-
idation samples.

METHODS

Specimens

Two cohorts of 225 H&E-stained whole-slide images from
225 cases of common and uncommon urothelial lesions (64
cases of IUP, 69 cases of UCInv, and 92 cases of UCLG) were
analyzed (Appendix Table A1). The sample histology figures
of these three types of urothelial lesions (ie, IUP, UCInv, and
UCLG) are shown in Figure 1. Before feature extraction, we
transformed the color appearance of the images from the
external IUP cohort into that used for the Indiana University

cohort using a structure-preserving color normalization
algorithm.14 This research was approved by the Institutional
Review Board in accordance with the Institutional Com-
mittee for the Protection of Human Subjects.

Preprocessing of Pathologic Images

We divided each whole-slide image (403) into patches
(1,024 3 1,024 pixels each) without overlap to facilitate
efficient processing. Because the resulted patches may not
cover enough tissue, we selected the valid patches with
larger than 70% tissue content for further analysis. The
tissue content was then calculated as the percentage of
nonwhite pixels (at least one of the red, green, and blue
[RGB] color channel values was below 200 in the 24-bit RGB
color space) in a particular patch.

Cell-LevelMorphology andTopology Feature Extraction

The image-level cell morphology and topology feature ex-
traction pipeline was composed of the following three steps:
nucleus segmentation, cell-level feature extraction, and ag-
gregation of cell-level features into image-level features.
Specifically, a multithreshold-based unsupervised nucleus
segmentation method was used to segment all cells in each
whole-slide image.15 Next, four cell-level morphological
features, including the nucleus area (denoted as Area),;the
major and minor axis length of cell nucleus (denoted as
Major andMinor); the ratio ofmajor axis length tominor axis
length (denoted as Ratio); and three cell-level topological
features characterizing the minimum, maximum, and mean
cell neighboring distance (denoted as distMin, distMax, and
distMean), were extracted. Here, the neighboring nucleus
distance was calculated using the Delaunay triangulation
graph, where the vertex set included all cell nuclei and the
edge set contained triangle edges linking neighboring nuclei.
Then, for each type of cell-level feature, a five-bin

CONTEXT

Key Objective
Inverted urothelial papilloma (IUP) is an uncommon benign urothelial neoplasm that is hard to distinguish from other
bladder tumors. This study implements an automatic computational pipeline from histopathologic images that can capture
subtle morphological differences between IUP and other bladder tumors and contribute to a potential guideline for IUP
diagnosis.

Knowledge Generated
We constructed an automatic, reliable, comprehensive, interpretable, and reproducible whole-slide pathologic image feature
extraction pipeline to distinguish IUP from its mimickers. Our methods can facilitate the accurate diagnosis of IUP, which is
a benign entity, and its distinction from malignant mimickers, thereby contributing to precision cancer diagnostics.

Relevance
The proposed computational pipeline can robustly and accurately distinguish benign IUP of the urinary bladder from
urothelial carcinomas.
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histogram and three statistic measurements (ie, mean,
standard deviation, and entropy) were calculated to aggre-
gate the nucleus features into image-level nucleus features,
and we finally obtained a 32-dimension morphology and a
24-dimension topology feature set for each patient. We used
the same naming rule for both cell-level and image-level
features. For instance, the feature ratio_1 represented the
percentage of cells with small ratio of major axis length to
minor axis length, implying the round-shaped cells,
whereas major_5 referred to the percentage of cells with

larger long axes in nuclei, often implying cells with an
elongated shape.

Patch-Level Texture Feature Extraction

For each valid patch derived from whole-slide images, we
first converted it to a gray-scale image and then extracted
the well-established 13-dimensional Haralick features
(denoted as Hara_1, Hara_2, …, Hara_13) from its corre-
sponding gray-level co-occurrence matrix (GLCM).16 The 13
different Haralick features were derived from four basic
GLCM features that can describe the textural information of
the divided patches. Following the same aggregation
strategy applied on nucleus features, we summarize all
patch-level Haralick features into a 104-dimensional
image-level feature set.

Multimodal Data Fusion and Classification Via
Kernel Combination

We applied linear multikernel-based Support Vector Ma-
chine (ie, SVM) to combine multiple types of image features
(morphology, topology, and texture features) for discrimi-
nating between IUP and UCInv (or UCLG).21 Suppose that we
were given n training samples, let x1i2R32, x2i 2R24, and x3i 2R195

denote themorphology, topology, and texture features of the
i-th sample, respectively, and its corresponding class label
was represented by yi2f2 1; 1g. The cost function for the
multikernel-based SVM could be formulated as

minwm ;b; «i

1
2�

3

m5 1bmkwmk2 1C�n

i5 1«i;

s:t: yi

0
@�3

m5 1bm

�
ðwmÞT˘ðmÞ�xmi

�
1b

�1A$ 12 «i; (1)

«i $0; i5 1;…;n;

where wm, ˘ðmÞ; and bm $0 represent the normal vector to
the hyperplane separating the two classes, the kernel-
induced mapping function, and the weight value for the
m-th type of feature, respectively. Here, we constrained
b1 1b2 1b3 5 1 and applied a coarse-grid search method to
determine the optimal value of bm.

Feature Weight for Multimodal Learning

Since the linear kernel, that is, kmðxmi ; xmÞ5 ðxmi ÞTxm, was
used in the proposed multikernel SVM, Equation 2 could be
reformulated as

fðxÞ5 sign

0
@�n

i5 1yiai�
3

m5 1bm

�
xmi

�Txm 1b

1
A: (2)

From Equation 2, the weight for the k-th feature in feature
type m, that is, Dm

k could be calculated as

A

B

C

FIG 1. Histopathology of different types of urothelial lesions: (A)
IUP, (B) UCInv, and (C) UCLG. IUP, inverted urothelial papilloma;
UCInv, inverted urothelial carcinoma; UCLG, low-grade urothelial
carcinoma.
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Dm
k 5�n

i5 1yiaibm

�
xmi

�k
; (3)

where ðxmi Þk represents the k-th feature in xmi . Thus, we could
rank the importance of each feature by the absolute value
of Dm

k .

Ensemble Learning for External Validation

We constructed the ensemble classifier by combining two
individual classifiers, that is, IUP versus UCLG and IUP
versus UCInv, for classifying the IUP samples on the external
IUP cohort. For each of these two classifiers outputting the
probability of whether a particular sample was IUP, we
averaged these two probability values to generate the final
prediction results.

RESULTS

Patient characteristics are listed in Appendix Table A1. On the
Indiana University cohort, we conducted two classification
tasks, IUP versus UCInv and IUP versus UCLG, to evaluate the
classification performance of our method. The external IUP
cohort was used to test the generalization capability of our
classification model. Because of the lack of control samples
(ie, UCInv and UCLG) on the external cohort, we calculated
the proportion of correctly identified external IUP samples to
test the generalization ability of our model.

Workflow for Machine Learning–Aided Pathologic
Image Analysis

Given the input whole slide imaging from the Indiana
University cohort, a pathologic image analysis pipeline
(Fig 2) was used to extract the nucleus morphology, to-
pology, and texture features. Specifically, after segmenting
the nucleus in the whole-slide pathologic image, four cell-
level morphological features were extracted with this
pipeline (Appendix Fig A1), including the nucleus area
(denoted as area), the major and minor axis length of cell
nucleus (denoted asmajor andminor), the ratio ofmajor axis
length to minor axis (ratio), and three cell-level topological
features (Appendix Fig A2) characterizing the minimum,
maximum, and mean cell neighboring distance (denoted as
distMin, distMax, and distMean). As to texture features, a
13-dimension Haralick feature17 (Appendix Fig A3) was
extracted from each valid patch (details in the Methods
section) in the histopathologic images. Next, a five-bin
histogram and three statistic measurements, that is,
mean, standard deviation, and entropy, were used to ag-
gregate the nucleus and texture features into 160-dimension
image-level features (details in the Methods section).

After the feature extraction step, we applied the multikernel
combinationmethod to effectively integrate the image-level
morphology, topology, and texture features. The kernel
combination method could be naturally embedded into the

conventional SVMwithout extra steps (details in theMethod
section) for discriminating between IUP and UCInv or UCLG
and validating on an external IUP data set.

Extracted Image Feature Showed Significant Differences
Between IUP and Other UC Subtypes

We applied the Mann–Whitney U test to identify individual
image features that were capable of distinguishing between
IUP and UCLG (or UCInv) after multiple testing corrections
(false discovery rate < 0.01; Fig 3). A significant feature was
reported as under-represented if its median value in IUPwas
lower than that in UCInv (or UCLG). Otherwise, it was
designated as an over-represented feature.

We identified 68 image features in total that were signifi-
cantly different between IUP and UCInv (Fig 3A) and 42
image features significantly different between IUP and UCLG
(Fig 3B). For the morphology features, we found that
ratio_bin2 and ratio_bin3 were over-represented (Figs 3A
and 3B), whereas ratio_bin1 was under-represented in IUP
cohorts compared with the UCInv cohort (Fig 3A). Here, the
features from ratio_bin1 to ratio_bin5 directly described the
percentages of the nuclei whose shape changed from round
to elongated, indicating that IUP samples contain more cells
with a larger major to minor axis ratio. In addition, we
observed that area_bin1 and area_bin2 were over-
represented in IUP when compared with UCInv, whereas
area_bin4 and area_bin5 were under-represented (Fig 3A).
These results suggested that IUP contained more small-size
cells when compared with UCInv.

Moreover, it is of great interest to find that all extracted
topology features, except for distMin_bin2, showed sig-
nificant differences between IUP and UCInv (or UCLG).
Among these features, distMin_bin1, distMax_bin1, and
distMean_bin1, reflecting a small cell neighboring distance,
were over-represented in IUP, whereas the remaining to-
pology features were under-represented in IUP (Figs 3A and
3B). These results indicated that the cells in IUP were more
likely clustered together than those in UCInv and UCLG.

As for the Haralick texture features, we found that Har-
a_2_bin4 was under-represented in IUP (Figs 3A and 3B).
Actually, Hara_2 characterized the local neighborhood
variation of the images, indicating that the local appearance
of IUP was more uniform than UCInv and UCLG.

Moreover, we found that Hara_5_bin5 was over-
represented in IUP compared with UCLG (Fig 3B). Contrary
to Hara_2, Hara_5 was used to describe the local homo-
geneity of the image and image features from Hara_5_bin1
to Hara_5_bin5 described the local image patterns ranging
from heterogeneous to homogenous. Therefore, both the
significant features of Hara_2 andHara_5 indicated that the
variation of local appearance in IUP was small in comparison
with that in UCInv and UCLG.
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Machine Learning Models on the Basis of Image
Features Enabled More Reliable Diagnosis of IUP

Wefirst trained and evaluated the proposedmethod on the
Indiana University cohort. During the experiments, we
randomly partitioned the samples into five folds, and one
partition was used as testing data, whereas the remaining
four were used for model training. For the training data
set, we split 25% of samples to tunemodel parameters. We
repeated the five-fold split 10 times, and the mean, the
standard deviation of the area under the receiver oper-
ating characteristic curve (AUC), and the accuracy were
reported.

We first tested our method on IUP versus UCInv (Fig 4A)
and IUP versus UCLG (Fig 4B) classification tasks by the
combination of different types of features, compared with
the methods using only individual feature types. The re-
sults showed that using the multikernel combination
method to integrate morphology, topology, and texture
features consistently achieved more accurate discrimi-
nation between IUP and UCInv or UCLG. Specifically, for
distinguishing IUP from UCInv (Figs 4A and 5), our mul-
tikernel combination method achieved an AUC of 0.913, an
accuracy of 0.863, and an F1 score of 0.874, whereas the
best AUC, accuracy, and F1 score using only a single type
of feature were 0.807, 0.747, and 0.774, respectively.

A Case Series

B Feature Extraction

D External Validation

C Machine Learning

Morphology

Model 1

Model 1

Ensemble

Model 2

Model 2

Topology

Texture

Haralick's texture features

Major Minor Ratio Area

IUP UCLG

IUP IUP UClnvUCLG

UClnv

Angular second moment
Contract
Correlation
Sum of squares: variance
......

Mean
Variance
Entropy

Mean
Variance
Entropy

Mean
Variance
Entropy

distMin

Kernel
Combine

distMax distMean

FIG 2. The machine learning workflow to extract image features and construct models. (A) The whole-slide pathologic images from the
Indiana University cohort collected with 47 IUP, 69 UCInv, and 92 UCLG cases. (B) For each segmented nucleus, four morphology features
and three topology features were extracted. For each valid patch, 13 Haralick texture features were extracted. Then, each cell-level or patch-
level feature was aggregated to eight image-level feature using five-bin histogram and three distribution statistics (mean, variance, and
entropy). Finally, the multikernel combination strategy was used to integrate the three types of image-level features. (C) On the basis of the
combination of the extracted image-level feature, machine learning models were applied to discriminate between IUP and UCInv (or UCLG).
(D) An ensemble strategy was applied to combine the IUP versus UCInv and IUP versus UCLG classification models to predict the IUP
samples on the external validation cohort. IUP, inverted urothelial papilloma; UCInv, inverted urothelial carcinoma; UCLG, low-grade urothelial
carcinoma.
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Similarly, for classifying IUP from UCLG (Figs 4B and 5),
our multikernel combination method achieved an AUC of
0.920, an accuracy of 0.876, and an F1 score of 0.901,
whereas the best AUC, accuracy, and F1 score on individual
feature types were only 0.816, 0.748, and 0.759, respec-
tively. Moreover, the confusion matrices shown in Figures
5A and Fig 5B also indicated that our method can effec-
tively identify patients with IUP in different classification
tasks (ie, IUP v UCInv and IUP v UCLG).

In addition, we also compared the results of the proposed
method with the direct combination method that concate-
nated all types of features into a long vector, followed by the
linear SVM for classification, which is referred as concate-
nation in Figure 3. It is clear from the results that our kernel
combination method significantly outperformed the feature
concatenation method on both IUP versus UCInv (t-test,
AUC: P value 5 .05, accuracy: P value 5 .004) and IUP versus

UCLG (t-test, AUC: P value 5 .03, accuracy: P value 5 .0051)
classification tasks (Figs 4A and 4B).

Moreover, similar to our workflow only requiring whole-
slide level label for model training, we compared our clas-
sification methods with two deep learning algorithms, that
is, MIL13 and DeepPATH14 (Fig 4C). We observed that our
method could consistently achieve significant higher AUC
than these competingmethods on both IUP versusUCInv and
IUP versus UCLG tasks. One possible reasonwas that the deep
learning–based algorithm typically required training on
large data sets, whereas IUP was a urothelial neoplasm
subtype with scarce samples, and thus, it might be difficult
to collect enough IUP to train a deep learning model.

Next, we summarized the top five important features of each
feature type according to their weights in our multikernel
learning model (details in the Methods section) for IUP
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FIG 3. Compared individual image features between IUP and another noninvasive urothelial carcinoma by the Mann–Whitney U test. Univariate
image feature analysis (A) between IUP and UCInv and (B) between IUP and UCLG. The foldchange was calculated by the ratio of the median
feature values between IUP and UCInv (or UCLG). Multiple comparison correction was performed, and an adjusted P value <.01 was considered
statistically significant. IUP, inverted urothelial papilloma; UCInv, inverted urothelial carcinoma; UCLG, low-grade urothelial carcinoma.
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FIG 4. The classification results of different machine learning models. Comparison of different methods on (A) IUP versus UCInv
classification task and (B) IUP versus UCLG classification task. (C) The AUC comparison between our proposed method and two weakly
supervised deep learning algorithms (ie, DeepPATH and MIL). (D) The top-five important features of (continued on following page)
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versus UCInv (Fig 4D) and IUP versus UCLG tasks (Fig 4E).
Specifically, for the morphologic features, ratio_bin2 and
ratio_bin3 were identified by both univariate analysis (Fig 3)
and our machine learning model (Figs 4D and 4E). Further
investigation of the histogram for ratio feature (Fig 6A) in-
dicated that the ratio_bin2 and ratio_bin3 values in IUP were
larger than those in UCInv and UCLG, suggesting that IUP
samples contained more elongated cells with a larger major
to minor axis ratio. As for the topological feature, dis-
tMax_entropy was identified on both IUP versus UCInv and
IUP versus UCLG tasks with higher weights; we also plotted
thehistograms for the featuredistMax to show its distribution
difference among different cancer cohorts (Fig 6B). Both the
feature histograms and representative image patches showed
that the cells in IUP samples were clustered more densely
(larger distMax_bin1 value) than IUP and UCLG. Finally, the
texture Hara_2 feature characterizing the local variation of
the input image was also identified by univariate analysis
(Fig 3) and our multikernel combination model (Figs 4D and
4E). The representative samples and their corresponding
histograms (Fig 6C) demonstrated that the local appearance
of IUP samples was more homogenous (ie, larger Har-
a_2_bin2 value) than those in UCInv and UCLG.

Validating the Ensemble Model on the External
IUP Cohort

After applying our method on the Indiana University cohort,
two machine learning models were obtained, that is, IUP
versus UCInv and IUP versus UCLG. To improve the model
generalizability, we constructed an ensemble classifier
(described in the Methods section) by combining the above
two models for identifying IUP samples in the external IUP
cohort. Because of the difficulty in obtainingUCLGandUCInv
samples, our external data set only consisted of 17 IUP
samples. We therefore calculated the proportion of correctly
identified IUP as the metric for accuracy of the learned
model. The comparison between accuracies for identifying
IUP in the Indiana University cohort and external validation
cohort (Appendix Fig A4A) indicated that while the IUP
identification accuracy on the external cohort was slightly
lower than the performance on the Indiana University co-
hort, it was still as high as 88.2%. Therefore, it clearly
demonstrated the robustness and generality of the learned
model, implying the generalizability of our approach.
Moreover, as shown in Appendix Fig A4B, except for the
texture Haralick and topology features, the ensemble

FIG 4. (Continued). each feature type produced from our kernel combination method on IUP versus UCInv classification task. (E) The top-
five important features of each feature type produced from our kernel combination method on IUP versus UCLG classification task. IUP,
inverted urothelial papilloma; UCInv, inverted urothelial carcinoma; UCLG, low-grade urothelial carcinoma.
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FIG 5. Confusion matrix for (A) the IUP versus UCInv classification task and (B) the IUP versus UCLG
classification task. (C) Comparison of the F1 Score for different classification tasks. IUP, inverted
urothelial papilloma; UCInv, inverted urothelial carcinoma; UCLG, low-grade urothelial carcinoma.
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classifier could better identify the external cohort IUP
samples with high accuracy.

DISCUSSION

IUP is an unusual neoplasm of the urinary tract that is con-
sidered as a benign tumor. Microscopically, it is challenging
for general surgical pathologists to distinguish IUP fromother
noninvasive UC, that is, UCInv and UCLG, since they exhibit
similar histopathologic appearance.2-6 In this investigation,
we designed a computational pipeline for the identification of
IUP using image features extracted fromwhole slide imaging.
To the best of our knowledge, this is the first study to provide
an accurate, comprehensive. and interpretable machine
learning pipeline to classify IUP fromother noninvasive UCon
the basis of the machine learning model.

This study had several strengths and advantages. First, an-
alyzing histopathologic images is one of the most difficult
machine learning tasks, hindered by the large size of the
microscopy images. Studies usually sliced whole slide imag-
ings into amounts of small patches, followed by the selection
of most informative patches for machine learning model
construction. Intuitively, it required labor-sensitive patch-
level annotation and different choices of patch size can in-
crease the uncertainties of the model performances. In the

current investigation, our method was assessed on the whole
slide imaging level, whichwas amore robust and reproducible
method that can reduce the expert annotation efforts.

Second, with the help of ever-increasing computing re-
sources, many computational histopathologic systems have
been proposed to extract different types of histopathologic
image features to help diagnose human cancers.18-27 However,
most existing research focused on using single type of image
feature for cancer diagnosis although recent studies have
shown that different biomarkersmay provide complementary
information for the diagnosis of human cancer. In this study,
we extracted multiple types of image features, that is, mor-
phology, topology, and texture features from eachwhole slide
imaging, and applied themultikernel combination strategy to
fuse multimodal data for the diagnosis of IUP. The experi-
mental results, as shown in Figure 3, clearly indicated that our
method can achieve the mean AUC of 0.913 and 0.920 for IUP
versus UCInv and IUP versus UCLG distinction tasks, re-
spectively, which were significantly superior to the results
when using even the best individual type of image feature.
These results demonstrated the effectiveness of integrating
different types of features in distinguishing IUP and other
noninvasiveUC subtypes. In addition, it is noteworthy that our
proposed method could achieve higher AUC than two deep
learning–basedwhole slide imaging classification algorithms
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FIG 6. (A) The representative image samples and their corresponding histograms on Ratio feature among different cohorts. (B) The repre-
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samples and their corresponding histograms on the Hara_2 feature among different cohorts.
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for both IUP versus UCInv and IUP versus UCLG classification
tasks. The growth and success of deep learning approaches
can be attributed to the availability of a large number of
training samples. Nonetheless, the diagnosis of rare UC
subtypes using whole slide imaging faced the challenges of
high dimensionality and limited sample size, which may lead
to overfitting and inaccurate classification for deep learning–
based algorithms. Our data suggested that the proposed
feature extraction and classification pipelines were more
suitable for handling whole slide imaging classification
problems when the available training data were not sufficient
to train the deep learning models.

Third, our study provided an interpretable framework to
generate hypotheses for clinically relevant biomarkers. For
instance, the over-representation of three image features
(ie,,distMax_bin1, distMin_bin1, and distMean_bin1) in-
dicated that more cells in IUP samples are clumped together
than those in UCInv and UCLG. In addition, we also found
that the IUP samples have more spindle-shaped cells with
higher major axis to minor axis ratio.

Our study had a few limitations. First, because of the limi-
tation of the data source, the classification model has only
been validated on a small external data set, but we were still

able to achieve good accuracy to demonstrate the strong
generalization ability of our proposed workflow. Second, we
applied a simple but effective kernel combination strategy to
fuse different types of histopathologic image features for IUP
diagnosis, and we would expect to see more advanced ma-
chine learning studies that can better combine multiple
types of image features for performance improvement.
Another important limitation was that we only investigated
the classification between noninvasive UC (either UCInv or
UCLG) and IUP and did not test the ability of the proposed
method to discriminate IUP from other UC subtypes. Future
studies should include other UC subtypes to test if the
proposed method can still successfully identify IUP.

In summary, we constructed an automatic, reliable, com-
prehensive, interpretable, and reproducible whole slide
imaging feature extraction pipeline and used these extracted
features to develop a machine learning model to distinguish
IUP from its mimickers. The experimental results demon-
strated that the histopathology image classifiers on the basis
of quantitative features can successfully identify IUP with a
high accuracy on the external validation set. Our methods
can facilitate the accurate diagnosis of IUP, which is a benign
entity and its distinction frommalignantmimickers, thereby
contributing to precision cancer diagnostics.

AFFILIATIONS
1Department of Medicine, Indiana University School of Medicine,
Indianapolis, IN
2Regenstrief Institute, Indianapolis, IN
3Department of Morphological Sciences, University of Cordoba Medical
School, Cordoba, Spain
4Departments of Pathology and Urology, Emory University School of
Medicine, Atlanta, GA
5Department of Medical and Molecular Genetics, Indiana University,
Indianapolis, IN
6Department of Pathology and Laboratory Medicine, Department of
Surgery (Urology), Brown University Warren Alpert Medical School, the
Legorreta Cancer Center at Brown University, and Brown University
Health, Providence, RI

CORRESPONDING AUTHOR

Liang Cheng, MD, MS; e-mail: liang_cheng@yahoo.com.

EQUAL CONTRIBUTION

W.S. and M.C. contributed equally to this work as cofirst authors.

SUPPORT

Supported in part by the Indiana University Precision Health Initiative
(to K.H.), the NIH U54AG065181 grant (to K.H., J.Z., W.S.), and the
National Science Foundation of China (No. 61902183) to W.S.

AUTHOR CONTRIBUTIONS

Conception and design: Wei Shao, Jie Zhang, Liang Cheng, Kun Huang
Financial support: Liang Cheng
Administrative support: Liang Cheng
Provision of study materials or patients: Wei Shao, Antonio Lopez-
Beltran, Adeboye O. Osunkoya, Liang Cheng
Collection and assembly of data: Liang Cheng
Data analysis and interpretation:Michael Cheng, Antonio Lopez-Beltran,
Adeboye O. Osunkoya, Liang Cheng
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS
OF INTEREST

The following represents disclosure information provided by authors of
this manuscript. All relationships are considered compensated unless
otherwise noted. Relationships are self-held unless noted. I 5
Immediate Family Member, Inst 5 My Institution. Relationships may
not relate to the subjectmatter of thismanuscript. Formore information
about ASCO’s conflict of interest policy, please refer to www.asco.org/
rwc or ascopubs.org/cci/author-center.
Open Payments is a public database containing information reported by
companies about payments made to US-licensed physicians (Open
Payments).

Jie Zhang
Stock and Other Ownership Interests: Monument Biosciences

Kun Huang
Research Funding: Merck (Inst), Lilly (Inst)
Travel, Accommodations, Expenses: Merck

No other potential conflicts of interest were reported.

10 | © 2025 by American Society of Clinical Oncology

Shao et al

D
ow

nl
oa

de
d 

fr
om

 a
sc

op
ub

s.
or

g 
by

 M
al

lo
ry

 C
oy

le
 o

n 
Ju

ne
 2

, 2
02

5 
fr

om
 0

20
.1

61
.1

74
.1

07
C

op
yr

ig
ht

 ©
 2

02
5 

A
m

er
ic

an
 S

oc
ie

ty
 o

f 
C

lin
ic

al
 O

nc
ol

og
y.

 A
ll 

ri
gh

ts
 r

es
er

ve
d.

 

mailto:liang_cheng@yahoo.com
http://www.asco.org/rwc
http://www.asco.org/rwc
https://ascopubs.org/cci/author-center
https://openpaymentsdata.cms.gov/
https://openpaymentsdata.cms.gov/


REFERENCES
1. Siegel RL, Kratzer TB, Giaquinto AN, et al: Cancer statistics, 2025. CA Cancer J Clin 75:10-45, 2025
2. Cheng L, Lopez-Beltran A, Montironi R: Bladder Pathology (ed 2). Hoboken, NJ, Wiley-Blackwell, 2025
3. Hodges KB, Lopez-Beltran A, Maclennan GT, et al: Urothelial lesions with inverted growth patterns: Histogenesis, molecular genetic findings, differential diagnosis and clinical management. BJU Int

107:532-537, 2011
4. Montironi R, Cheng L, Lopez-Beltran A, et al: Inverted (endophytic) noninvasive lesions and neoplasms of the urothelium: The Cinderella group has yet to be fully exploited. Eur Urol 59:225-230,

2011
5. Lopez-Beltran A, Henriques V, Montironi R, et al: Variants and new entities of bladder cancer. Histopathology 74:77-96, 2019
6. Cheng L, Davidson DD, Wang M, et al: Telomerase reverse transcriptase (TERT) promoter mutation analysis of benign, malignant and reactive urothelial lesions reveals a subpopulation of inverted

papilloma with immortalizing genetic change. Histopathology 69:107-113, 2016
7. Kleppe A, Skrede OJ, De Raedt S, et al: Designing deep learning studies in cancer diagnostics. Nat Rev Cancer 21:199-211, 2021
8. Song AH, Jaume G, Williamson DFK, et al: Artificial intelligence for digital and computational pathology. Nat Rev Bioeng 1:930-949, 2023
9. George RS, Htoo A, Cheng M, et al: Artificial intelligence in prostate cancer: Definitions, current research, and future directions. Urol Oncol 40:262-270, 2022
10. Wu Y, Cheng M, Huang S, et al: Recent advances of deep learning for computational histopathology: Principles and applications. Cancers (Basel) 14:1199, 2022
11. van der Laak J, Litjens G, Ciompi F: Deep learning in histopathology: The path to the clinic. Nat Med 27:775-784, 2021
12. Fu Y, Jung AW, Torne RV, et al: Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat Cancer 1:800-810, 2020
13. Campanella G, Hanna MG, Geneslaw L, et al: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med 25:1301-1309, 2019
14. Coudray N, Ocampo PS, Sakellaropoulos T, et al: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 24:1559-1567, 2018
15. Cheng J, Han Z, Mehra R, et al: Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma. Nat Commun 11:1778, 2020
16. Shao W, Han Z, Cheng J, et al: Integrative analysis of pathological images and multi-dimensional genomic data for early-stage cancer prognosis. IEEE Trans Med Imaging 39:99-110, 2020
17. Haralick RM: Statistical and structural approaches to texture. Proc IEEE 67:786-804, 1979
18. Moen E, Bannon D, Kudo T, et al: Deep learning for cellular image analysis. Nat Methods 16:1233-1246, 2019
19. Adamson AS, Welch HG: Machine learning and the cancer-diagnosis problem—No gold standard. N Engl J Med 381:2285-2287, 2019
20. Park SH, Han K, Jang HY, et al: Methods for clinical evaluation of artificial intelligence algorithms for medical diagnosis. Radiology 306:20-31, 2023
21. Corti C, Cobanaj M, Dee EC, et al: Artificial intelligence in cancer research and precision medicine: Applications, limitations and priorities to drive transformation in the delivery of equitable and

unbiased care. Cancer Treat Rev 112:102498, 2023
22. Lopez-Beltran A, Cimadamore A, Montironi R, et al: Molecular pathology of urothelial carcinoma. Hum Pathol 113:67-83, 2021
23. Lopez-Beltran A, Cookson MS, Guercio BJ, et al: Advances in diagnosis and treatment of bladder cancer. BMJ 384:e076743, 2024
24. Swanson K, Wu E, Zhang A, et al: From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell 186:1772-1791, 2023
25. Haug CJ, Drazen JM: Artificial intelligence and machine learning in clinical medicine, 2023. N Engl J Med 388:1201-1208, 2023
26. Zhu L, Pan J, Mou W, et al: Harnessing artificial intelligence for prostate cancer management. Cell Rep Med 5:101506, 2024
27. Riaz IB, Harmon S, Chen Z, et al: Applications of artificial intelligence in prostate cancer care: A path to enhanced efficiency and outcomes. Am Soc Clin Oncol Educ Book 44:e438516, 2024

JCO Clinical Cancer Informatics ascopubs.org/journal/cci | 11

Beyond Deep Learning

D
ow

nl
oa

de
d 

fr
om

 a
sc

op
ub

s.
or

g 
by

 M
al

lo
ry

 C
oy

le
 o

n 
Ju

ne
 2

, 2
02

5 
fr

om
 0

20
.1

61
.1

74
.1

07
C

op
yr

ig
ht

 ©
 2

02
5 

A
m

er
ic

an
 S

oc
ie

ty
 o

f 
C

lin
ic

al
 O

nc
ol

og
y.

 A
ll 

ri
gh

ts
 r

es
er

ve
d.

 

http://ascopubs.org/journal/cci


APPENDIX

Feature Name Description

Area Size of nucleus

Major Major axis length

Minor Minor axis length

Ratio Major to minor ratio

Patch With Small Value Patch With Large Value

FIG A1. Illustrations of the four nucleus-level morphology features.

distMean
Mean distance to
neighbors

distMin
Minimum distance
to neighbors

distMax
Maximum distance
to neighbors

Feature Name Description Patch With Small Value Patch With Large Value

FIG A2. Illustrations of the three nucleus-level topology features.
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Hara_1
Image global
homogeneity

Hara_2
Local
neighborhood
variation.

Hara_3
Dependency of
neighboring pixels

Hara_4
Variance of gray
levels

Hara_5
Local
neighborhood
homogeneity

Hara_6
Average sum of
gray levels

Hara_7
Variance of sum of
gray levels

Hara_8
Entropy of sum of
gray levels

Hara_9
Entropy of gray
levels

Hara_10
Variance of
difference in gray
levels

Hara_11
Entropy of
difference in gray
levels

Hara_12
Mutual information
of gray levels

Hara_13
Difference between
joint entropy of
gray levels

Feature Name Description Patch With Small Value Patch With Large Value

FIG A3. Illustrations of the 13 patch-level Haralick texture features.
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FIG A4. (A) The comparison of accuracies for identifying IUP samples on the IU and the external cohorts by applying the ensemble
learningmethod. (B) Comparisons between individual and ensemble classification accuracy on H&Ewhole-slide pathologic images from
the external validation cohort. H&E, hematoxylin and eosin; IU, Indiana University; IUP, inverted urothelial papilloma.

TABLE A1. Demographic Information of Two Whole-Slide Image Cohorts

Cohort Tumor Type Specimen No. Male/Female Mean Age, years (range)

Indiana University cohort IUP TURB 47 33/14 63 (21-99)

UCInv TURB 69 50/19 64 (23-94)

UCLG TURB 92 71/21 69 (44-97)

External cohort IUP TURB 17 13/4 60 (34-87)

Abbreviations: IUP, inverted urothelial papilloma; TURB, transurethral resection of bladder; UCInv, inverted Ta urothelial carcinoma; UCLG,
low-grade Ta urothelial carcinoma.
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