Uptake of Cascade Genetic Testing for Hereditary Breast and Ovarian Cancer: A Systematic Review and Meta-Analysis

Muhammad Danyal Ahsan, MD, Isabelle R. Chandler, BA, Samantha Min, Benjamin Grant, BS, Michelle Primiano, MS, CGC, Jamieson Greenwald, MD, Tamar N. Soussana, BA, Becky Baltich Nelson, MS, Charlene Thomas, MS, Eloise Chapman-Davis, MD, Ravi N. Sharaf, MD, MS, and Melissa K. Frey, MD, MS

Abstract: This is a systematic review and meta-analysis evaluating the uptake of cascade genetic testing for hereditary breast and ovarian cancer syndrome. Among 30 studies included for meta-analysis, the uptake of cascade genetic testing was 33% (95% CI 25%-42%), with higher uptake rates among females compared with male relatives, and among first-degree compared with second-degree relatives. These findings indicate suboptimal uptake of cascade genetic testing among people at risk for hereditary breast and ovarian cancer syndrome, representing a missed opportunity for cancer prevention and early detection. There is a need for interventions to improve uptake rates.

Key Words: cascade genetic testing, hereditary breast and ovarian cancer, BRCA1, BRCA2

(Clin Obstet Gynecol 2024;67:702-710)

A pproximately 20% of patients with ovarian cancer carry an underlying pathogenic gene variant (PGV) in a cancer-associated gene, which is most commonly in genes associated with hereditary breast and ovarian cancer such as BRCA1 and BRCA2.¹ Blood relatives of these patients have up to 50% chance of carrying the same familial PGV. Presymptomatic genetic testing of these relatives can allow them the opportunity for personalized cancer risk reduction and surveillance, thus mitigating the morbidity and mortality associated with breast, ovarian, and pancreatic cancers.²-4 Cascade genetic testing is the process of extending genetic testing to blood relatives of patients diagnosed with germline PGVs (called probands).

Cascade genetic testing is an evidence-based national health priority endorsed by several national organizations

From the Weill Cornell Medicine, New York, New York. R.N.S. and M.K.F. are co-senior authors.

M.K.F. was supported by the following grant: American Association of Obstetricians and Gynecologists Foundation/American Board of Obstetrics & Gynecology (AAOGF/ABOG) Career Development Award. R.N.S. was supported by the following grants: National Cancer Institute Grant # K07CA216326 and R01CA211723 and Patient-Centered Outcomes Research Institute Grant # IHS-2017C3-9211.

The authors declare that they have nothing to disclose.

Correspondence: Muhammad Danyal Ahsan, MD, Genetics and Personalized Cancer Prevention Program, Weill Cornell Medicine, New York, NY. E-mail: mua2023@qatar-med.cornell.edu

Supplemental Digital Content is available for this article. Direct URL citations are provided in the HTML and PDF versions of this article on the journal's website, www.clinicalobgyn.com.

Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved. DOI: 10.1097/GRF.0000000000000895

including the Centers for Disease Control and Prevention (CDC), the American Society of Clinical Oncology (ASCO), and the American College of Obstetrics and Gynecology (ACOG).^{5,6} Despite this, uptake rates for cascade genetic testing in the United States remain suboptimal, with a prior meta-analysis demonstrating that only 36% of all at-risk relatives of people with any hereditary cancer syndrome complete cascade genetic testing.⁷

Given that several studies with new data have been published since our prior meta-analysis, we sought to conduct an updated systematic review and meta-analysis to evaluate the uptake rate of cascade genetic testing. 8–10 Furthermore, in contrast to our prior study which evaluated cascade testing across all hereditary cancer syndromes, this systematic review and meta-analysis is focused specifically on hereditary breast and ovarian cancer syndrome.

METHODS

Overview

This systematic review is reported by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and was preregistered with PROS-PERO (registration No.: CRD42024527352). 11,12 A comprehensive literature search was conducted on March 6, 2024, using the following bibliographic databases from inception: Ovid MEDLINE (In-Process and Other Non-Indexed Citations and Ovid MEDLINE 1946 to present), Ovid EMBASE (1974 to present), and Cochrane Library (Wiley). No article type, date, or language restrictions were included in the search. Search concepts included cascade screening, genetic counseling, and cancer. The complete Ovid MEDLINE search strategy is available in Supplementary Table 1, Supplemental Digital Content 1, http://links.lww.com/GRF/A34.

Inclusion and Exclusion Criteria

All primary research studies in English that reported quantitative outcomes of cascade genetic counseling and testing, or disclosure of genetic test results to at-risk relatives (ARRs) of people with hereditary breast and ovarian cancer were included. All articles that were not primary research, such as commentaries, narrative or systematic reviews, meta-analyses, as well as case reports and case series of fewer than 10 probands or ARRs, were excluded. All articles not available in the English language were excluded. All publications that were only abstracts or conference proceedings were also excluded. All qualitative studies that did not report quantitative outcomes for cascade genetic

counseling or testing or disclosure of genetic test results to ARRs were also excluded. A complete list of reasons for article exclusion is available in the PRISMA flow diagram (Fig. 1).

Article Review and Data Extraction

Search results were imported into the Covidence Systematic Review Management Software and de-duplicated. Two reviewers independently evaluated each article for eligibility, with conflicts resolved after discussion. Data for study characteristics, participant demographics, and outcomes of interest were extracted by one reviewer from all included studies into Microsoft Excel, with a second reviewer checking the extracted data for accuracy.

Outcomes Evaluated and Risk of Bias Assessment

Outcomes evaluated include: (1) the proportion of ARRs who completed genetic counseling among all ARRs and (2) the proportion of ARRs who completed genetic testing among all ARRs. Other factors associated with cascade genetic counseling or testing such as sociodemographic and relative characteristics were narratively synthesized. The risk of bias for interventional studies was evaluated using the Risk of Bias in Non-Randomized Studies-Interventional studies was evaluated using tools for non-interventional studies was evaluated using tools from the Joanna Briggs Institute (JBI). Publication bias was assessed by evaluating funnel plots for meta-analyses conducted.

Meta-Analysis

Meta-analyses for the proportion of at-risk relatives that completed genetic counseling and genetic testing were conducted using R software [Version 4.2.3(03/15/2023);

R Foundation for Statistical Computing, Vienna, Austria]. Statistical heterogeneity was tested through the χ^2 test (ie, Cochrane Q test), and a P-value ≤ 0.2 was used to indicate the presence of heterogeneity. Statistical heterogeneity was also assessed by the inconsistency statistic (I^2). A random effects analysis was used to calculate pooled proportions and means. The random effects analysis is more conservative and allows for more variability in the individual study proportion estimates when generating the pooled proportion. The pooled proportion was calculated using a random intercept logistic regression model with a logit transformation, and the 95% CI was calculated using the Clopper-Pearson interval. The DerSimonian-Laird estimator was used to estimate the between-study variance. For the outcome proportions of interest, the results of each study were expressed as binary proportions with exact 95% CIs. For each meta-analysis, a funnel plot was constructed and reviewed, displaying the study proportion against study precision, estimated by the standard error, to assess for publication bias.

RESULTS

Study Characteristics

A total of 32 publications of original research were included in this systematic review, of which data from 30 studies were included for meta-analysis. 8-10,13-41 Study publication dates ranged from 1996 to 2024 and spanned 18 countries: United States (9), France (3), United Kingdom (3), Norway (2), Netherlands (2), Turkey (2), Bahamas (1), Belgium (1), Germany (1), Ireland (1), Israel (1), Italy (1), South Korea (1) Malaysia (1), Singapore (1), Spain (1), Switzerland (1), and Trinidad and Tobago (1).

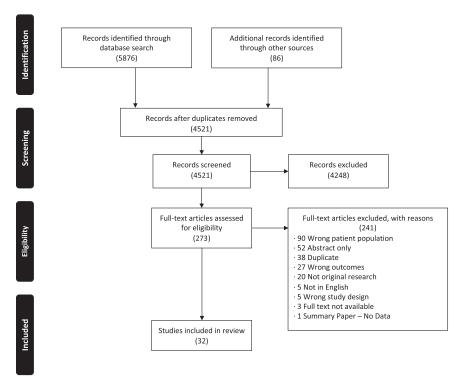


FIGURE 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.

TABLE 1. Demographics of Probands and Relatives in Included Studies (N = 86)

References	# Probands/ relatives	Proband age	Proband gender	Proband cancer history	Proband race/ethnicity	Relatives included (degree of relation)	Relative age	Relative gender	Relative cancer history	Relative race/ ethnicity	Country	Study
Agiannitopoulos et al ⁸	362/1246					First	Of those who completed cascade testing: Mean: 40 y	Of those who completed cascade testing: Female: 85 Male: 36	Of those who completed cascade testing: Yes: 13 No: 108		Greece	Retrospective
Biesecker et al ¹³	0/172						Median: 40	Female: 110 Male: 62		Caucasian: 172	USA	Prospective
Blandy et al ¹⁴	30/310	Mean: 52.0	Female: 30	Yes: 30 (breast, ovarian)		First, second, third		Female: 162 Male: 148			France	Cross- sectional
Bodd et at ¹⁵	75/172		Females: 58 Males: 17			First		Female: 84 Male: 88			Norway	Prospective
Brooks et al ¹⁶	0/384		Traces. 17			First-, Second- degree, Distant		Female: 202 Male: 182			UK	Retrospective
Cody et al ¹⁷	30/50	NR	Female: 29 Male: 1			First		Female: 50			Ireland	Retrospective
Cristaldo et al ¹⁸	135/0	Mean: 58.6	Female: 82 Male: 53								France	Cross- sectional
Donenberg et al ¹⁹	24/125					First, Second					Trinidad and Tobago	Prospective
Evans et al ²⁰	0/1157						Group 1 Female Median: 52 Male Median: 55 Group 3 Female Median: 44.6 Male Median: 50.2	Female: 594 Male: 563			UK	Prospective
Fehniger et al ²¹	73/448	Mean: 47.4			African American: 7 Asian/Pacific Islander: 14 Hispanic: 17 White: 32 Mixed: 3	First, Second		Female: 241 Male: 202		White: 135 African American: 53 Asian/Pacific Islander: 117 Hispanic: 123 Mixed: 15	USA	Cross- sectional
Finlay et al ²²	115/655		Female: 83 Male: 32		Ashkenazi Jewish: 28 Non-Ashkenazi/ Caucasian: 79 Unknown/ Caucasian: 7 Other: 1	First, Second		Female: 345 Male: 310			USA	Cross- sectional
Fischer et al ²³ Holloway et al ²⁴	0/2646 54/269				Ouici. I	First, Second,		Female: 2646 Female: 161 Male: 108			Germany UK	Retrospective Retrospective
Jeong et al ²⁵	129/423		Female: 129			First, Second, Third		Female: 235 Male: 188			Korea	Retrospective
Julian-Reynier et al ²⁶	0/419					First, Second		Female: 244 Male: 175	Yes: 36 (female only) No: 208 (female only)		France	Cross- sectional

Lerman et al ²⁷	0/192						Mean: 43	Female: 129 Male: 63		White: 192	USA	Prospective
Lieberman et al ²⁸	1771/0	Mean: 52.0	Female: 1406 Male: 365		Ashkenazi Jewish: 1771	First, Second		Marc. 03			Israel	Retrospective and cross- sectional
Lynch et al ²⁹	0/1574		Maic. 303					Intervention: Female: 359 Male: 181 No intervention: Female: 495 Male: 539			USA	Retrospective
McGivern et al ³⁰	38/0	Mean: 48.1	Female: 38		Caucasian: 37 Native American: 1	First, Second, Third		Female: 209 Male: 219			USA	
McInerney-Leo et al ³¹	212/0		Female: 138 Male: 74								USA	Prospective
Meijers-Heijboer et al ³²	0/682					First, Second		Female: 411 Male: 271			Netherlands	Prospective
Menko et al ³³	0/227					First, Second		Female: 113 Male: 114			Netherlands	Retrospective
Reichelt et al ³⁴	0/232							Female: 186 Male: 46	Yes: 30 (female only) No: 156 (female only)		Norway	Prospective
Sanz et al ³⁵	108/765	Median: 50.0	Female: 105 Male: 3			First, Second	Mean: 45.0	Female: 413 Male: 352	No. 130 (temale omy)		Spain	Retrospective
Sermijn et al ³⁸	0/172						Mean: 46	F1 202			Belgium	Prospective
Trottier et al ³⁹ Yoon et al ⁴⁰	0/202 37/471	Median: 45.0			Malaysian: 6 Indian: 8 Chinese: 23	First		Female: 202 Female: 227 Male: 244		Malaysian: 11 Indian: 8 Chinese: 42	Bahamas Malaysia	Prospective Prospective
Samadder, et al ³⁶	2984/176	Mean: 61.4	Female: 1402 Male: 1582	Breast, Ovarian, Endometrial Brain, Colon, Pancreas, Biliary, Gastric, Prostate	White: 2571 Hispanic/Latino: 159 Black/African American: 110 Asian: 53 American Indian: 29 Pacific Islander: 6 Other: 56						USA	Prospective
Sarki, et al ⁴¹	238/3456	Mean: 51.2	Female: 214 Male:24	Breast, Ovarian, Prostate, Colon, Endometrial	White: 199 Other: 39	First, Second, Third			Breast, Ovarian, Prostate		Switzerland	Retrospective
Schmidlen, et al ³⁷	263,859/ 14,758	Diagnostic Cohort Mean: 55.5 Proactive Cohort Mean: 48.4	226,230			First, Second, Third, Fourth	Diagnostic Cohort Mean: 46.4 Proactive Cohort Mean: 44.6	Female: 10,154 Male: 4,603			USA	Retrospective

Clin Obstet Gynecol • Volume 67, Number 4, December 2024

Cascade Testing for Hereditary Breast and Ovarian Cancer

TABLE 1. (continued)	ontinued)											
	# Probands/	Proband	# Proband Proband Cancer	Proband	Prohand	Relatives included			Relative cancer Relative race!	Relative race/		
References relatives age	relatives	age	gender history	history	ty	relation)	Relative age	Relative gender history	history	ethnicity	Country Study	Study
Seven, et al ¹⁰ 92/417		Mean: 45.1	Mean: 45.1 Female: 92 Breast: 75 Ovarian: 9 Breast: Association	Breast: 75 Ovarian: 9 Breast and		First		Female: 222 Male: 195			Turkey	Cross- sectional
Trevisan, et al ⁹ 213/1412	213/1412	Median: 54.0	Female: 199 Male: 14	Breast: 114 Ovarian: 53 Breast and ovarian: 19 Pancreas: 7 Prostate: 5		First, Second, Third, Fourth		Female: 737 Male: 648 Not Reported: 27			Italy	Retrospective

Participant Characteristics

A total of 11,323 probands and 20,012 relatives were evaluated for uptake of cascade genetic testing. Thirteen studies included information on the proband's sex. Among the 3186 probands in these studies, 2603 (81.7%) were female and 583 (18.3%) were male. Twenty-four studies included information on relatives' sex. Among the 13,796 relatives in these studies, 8862 (64.2%) were female and 4934 (35.8%) were male.

Six studies included information on proband race and ethnicity. Among the 2272 probands in these studies, 2153 (94.8%) identified as White, 51 (2.2%) as Asian, 17 (0.7%) as Hispanic/Latino, 7 (0.3%) as Black, 1 (0.1%) as Native American, and 43 (1.9%) as other. Among this group 1799 (79.2%) probands identified as Ashkenazi Jewish. Four studies included information on relatives' race and ethnicity. Among the 868 relatives included in these studies, 499 (57.5%) identified as White, 178 (20.5%) as Asian, 123 (14.2%) as Hispanic/Latino, 53 (6.1%) as Black, and 15 (1.7%) as other. Further details of proband and relative characteristics are available in Table 1.

Uptake Rates of Cascade Genetic Counseling and Testing

A total of 11 studies that evaluated 6992 relatives reported uptake rates of cascade genetic counseling. The overall uptake rate of cascade genetic counseling across all these studies was 33% (95% CI: 20%-49%).

A total of 30 studies evaluating 20,012 relatives reported uptake rates of cascade genetic testing. The overall uptake rate of cascade genetic testing across all these studies was 33% (95% CI: 25%-42%) (Fig. 2). Uptake rates for cascade testing were higher among female relatives compared with male relatives [42% (95% CI: 34%-51%) vs. 20% (95% CI: 14%-28%)]. Uptake rates for cascade testing were also higher among first-degree relatives compared with second-degree relatives [38% (95% CI: 31%-45%) vs. 21% (95% CI: 15%-29%)].

Other Factors Associated With Cascade Genetic Counseling and Testing

Several included studies also evaluated other factors associated with the uptake of cascade genetic testing; however, raw data were not available to conduct a metaanalysis. Two studies reported outcomes as proportions of probands who had at least 1 relative undergo cascade testing, reporting rates of 23% and 32% for this outcome.^{36,37} One study evaluated the impact of race and ethnicity on cascade testing and reported that relatives from White families were more likely to complete cascade genetic testing when compared with relatives from Black, Asian, Native American, and Hispanic/Latino families.²¹ One study evaluated the effect of insurance status on cascade genetic testing and found that relatives who had insurance were significantly more likely to complete cascade testing compared with uninsured relatives (OR: 3.74, 95% CI: 2.06-6.80).²⁷ Ten studies evaluated the impact of relative age and uptake of cascade genetic testing. 9,13,15,22,28,29,32,33,35,41 Among these, 8 studies reported that older relatives were more likely to complete cascade testing, and 2 studies reported the opposite, that younger relatives were more likely to complete cascade testing. Five studies reported on the impact of parenthood and cascade testing, with 4 studies reporting that probands with children were more likely to complete cascade testing, and 1 study reporting no

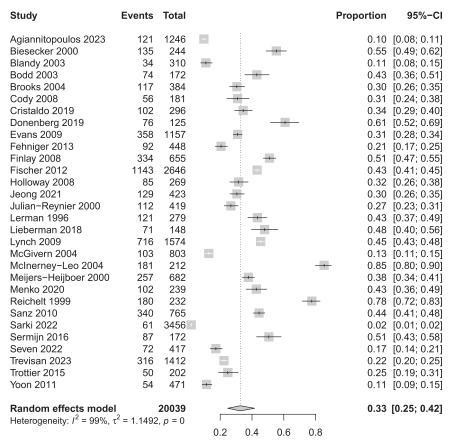


FIGURE 2. Forest plot for the pooled proportion of cascade genetic testing.

association between parenthood and uptake of cascade testing. 15,24,32,33,35 Additional factors associated with cascade testing that were evaluated are available in Table 2.

Risk of Bias Assessment

Study quality was assessed using appropriate ROB-INS-I, the Joanna Briggs Institute Critical Appraisal Checklist for cohort studies, or the Joanna Briggs Institute Critical Appraisal Checklist for analytical cross-sectional studies. The majority of studies assessed through ROBINS-I were found to be at moderate risk of bias (Supplementary Table 2, Supplemental Digital Content 1, http://links.lww.com/GRF/A34). Studies assessed using the Joanna Briggs instruments were all deemed appropriate to include in this review. The meta-analysis funnel plots suggest an underrepresentation of studies with smaller sample sizes reporting both low and high genetic counseling and genetic testing proportions.

DISCUSSION

We have systematically reviewed the literature on cascade genetic testing among patients with hereditary breast and ovarian cancer. Our meta-analysis found that among a cumulative 20,012 relatives at high risk of having hereditary breast and ovarian cancer syndrome across 30 studies, 33% (95% CI: 25%-42%) ultimately completed cascade genetic testing.

Given the lack of effective screening modalities for ovarian cancer, identifying people at an elevated inherited

risk of ovarian cancer is critical to minimizing the morbidity and mortality associated with ovarian cancer by offering these individuals risk-reducing surgery.^{2,3,42} Cascade genetic testing is a key component of identifying presymptomatic PGV carriers in a population, and as such is deemed a Tier 1 genomic application by the CDC.⁶ Although there is currently no expert consensus on a goal minimum uptake rate for cascade genetic testing, modeling studies have demonstrated that an uptake rate of 70% for first-degree and second-degree relatives would lead to the identification of all 4 million people with hereditary cancer syndromes in the United States within a decade.⁴³ We report a cascade testing uptake rate of approximately half this target among people at risk for hereditary breast and ovarian cancer, underscoring the urgent need to develop interventions to optimize this uptake rate.

Our study has also identified subpopulations in which rates of cascade genetic testing may be particularly low. These include male relatives and relatives more distant than first degree, as demonstrated in our meta-analyses. This is consistent with prior meta-analyses of cascade genetic testing that included other hereditary cancer syndromes, as well as rates of cascade disclosure of genetic test results to at-risk relatives.^{7,44} There are several potential reasons for the lower rates including a lack of awareness of hereditary breast and ovarian cancer syndrome among males, estranged family, discomfort disclosing personal medical information to distant relatives, and relatives living abroad, among others.^{45–48} In addition, limited studies demonstrated that older relatives, uninsured relatives, and relatives from

	Association with cascade testing identified	Association with cascade testing not identified
Relative characteristics		
Relative's age	Lieberman et al, ²⁸ Bodd et al, ¹⁵ Sanz et al, ³⁵ Meijers- Heijboer et al ³² (women only), Menko et al, ³³ Finlay et al, ²² Biesecker et al, ¹³ Lynch et al, ²⁹ Trevisan et al ⁹	Meijers-Heijboer et al, ³² Sarki et al ⁴¹
Relative's gender	Fehniger et al, ²¹ Lieberman et al, ²⁸ Menko et al, ³³ Bodd et al, ¹⁵ Blandy et al, ¹⁴ McGivern et al, ³⁰ Brooks et al, ¹⁶ Sanz et al, ³⁵ Holloway et al, ²⁴ Yoon et al, ⁴⁰ Meijers-Heijboer et al, ³² Finlay et al, ²² Sermijn et al, ³⁸ Julian-Reynier et al, ²⁶ Jeong et al, ²⁵ Evans et al, ²⁰ Lynch et al, ²⁹ Sarki et al, ⁴¹ Trevisan et al ⁹	Meijers-Heijboer et al, ³² Julian- Reynier et al, ²⁶ Biesecker et al, ¹³ Seven et al ¹⁰
Relative's race/ethnicity	Fehniger et al ²¹	
Relative's education	Sanz et al ³⁵	Fehniger et al, ²¹ Sarki et al ⁴¹
Relative's socioeconomic status	Holloway et al ²⁴	
Relative's employment status		Sarki et al ⁴¹
Relative's insurance status	Lerman et al ²⁷	
Relative's personal history of cancer	Holloway et al, ²⁴ Sanz et al, ³⁵ Sarki et al ⁴¹	Biesecker et al, ¹³ Fehniger et al, ²¹ Lieberman et al ²⁸
Relative residing in the United States vs. abroad	Fehniger et al ²¹	
Relative's parenthood	Holloway et al, ²⁴ Meijers-Heijboer et al, ³² Menko et al, ³³ Sanz et al ³⁵	Bodd et al ¹⁵
Relative's marital Status	Biesecker et al ¹³	Sarki et al ⁴¹
Relative has an adult daughter	Menko et al ³³	
Relative's knowledge about risk for relatives	Blandy et al ¹⁴	
Proband characteristics		
Specific hereditary cancer syndrome	Sanz et al ³⁵	
Proband's history of cancer	Seven	
Relationship between relative and pro-	bband	
Family support	Biesecker et al, ¹³ Blandy at el ¹⁴	Sarki et al ⁴¹
the proband	Fehniger et al, ²¹ Julian-Reynier et al, ²⁶ Lieberman et al, ²⁸ Sanz et al, ³⁵ Sermijn et al, ³⁸ Trevisan et al ⁹	Blandy et al, ¹⁴ Brooks et al, ¹⁶ Holloway et al, ²⁴ Seven et al ¹⁰
Frequency of communication between proband and relative	Fehniger et al ²¹	

racial and ethnic minority families may be less likely to complete cascade genetic testing. Although interventions evaluated to increase cascade testing uptake such as assisting probands with disclosure and direct relative contact have demonstrated effectiveness in bypassing some of these barriers and shown promise, larger randomized controlled trials in diverse populations are necessary before they can be standard-of-care.⁴⁹

Our results should be viewed in light of several limitations. First, there were heterogenous means by which the genetic testing status of relatives was determined across included studies, with the vast majority of studies relying on proband reports for this information which is subject to recall bias. The majority of studies in this review did not report on relatives' race and ethnicity, and of the ones that did, the vast majority of included relatives were non-Hispanic White, thus limiting the generalizability of these results to racial and ethnic minority populations. This underrepresentation is consistent with studies evaluating cascade testing for other hereditary cancer syndromes as well.⁵⁰ There were no randomized controlled trials among the studies included. All studies evaluated for risk of bias using ROBINS-I were deemed to be at moderate risk of bias, with 2 studies having a serious risk of bias. The funnel plots for our meta-analysis also indicate a lower number of smaller studies included with both low and high genetic counseling and genetic testing proportions. However, this is unlikely to bias our results because only the absence of smaller studies with low cascade testing uptake rates would suggest publication bias.

In conclusion, our systematic review and meta-analysis demonstrate an uptake rate of cascade genetic testing of only 33% among relatives at risk for hereditary breast and ovarian cancer, with males and more distant relatives significantly less likely to complete cascade genetic testing. High-quality randomized controlled trials evaluating interventions such as direct relative contact to increase uptake rates of cascade genetic testing are warranted among this patient population.

REFERENCES

- Norquist BM, Harrell MI, Brady MF, et al. Inherited mutations in women with ovarian carcinoma. *JAMA Oncol*. 2016;2:482–490.
- Finch AP, Lubinski J, Moller P, et al. Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. *J Clin Oncol*. 2014;32:1547–1553.
- Li X, You R, Wang X, et al. Effectiveness of prophylactic surgeries in brca1 or brca2 mutation carriers: a meta-analysis and systematic review. Clin Cancer Res. 2016;22:3971–3981.
- National Comprehensive Cancer Network. Guideline: Genetic/ Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic (Version 3.2024). 2024.
- Committee on Gynecologic P. ACOG committee opinion no. 727: cascade testing: testing women for known hereditary

- genetic mutations associated with cancer. *Obstet Gynecol*. 2018; 131:e31–e34.
- Center for Disease Control and Prevention. Tier 1 Genomic Applications Toolkit for Public Health Departments, 2024.
- Frey MK, Ahsan MD, Bergeron H, et al. Cascade testing for hereditary cancer syndromes: should we move toward direct relative contact? a systematic review and meta-analysis. *J Clin Oncol*. 2022;40:4129–4143.
- Agiannitopoulos K, Potska K, Katseli A, et al. Only 32.3% of breast cancer families with pathogenic variants in cancer genes utilized cascade genetic testing. *Cancers (Basel)*. 2023;15:5218.
- Trevisan L, Godino L, Battistuzzi L, et al. Cascade testing in italian hereditary breast ovarian cancer families: a missed opportunity for cancer prevention? Fam Cancer. 2023;23: 197–207.
- Seven M, Shah LL, Yazici H, et al. From probands to relatives: communication of genetic risk for hereditary breast-ovarian cancer and its influence on subsequent testing. *Cancer Nurs*. 2022;45:E91–E98.
- 11. Page MJ, McKenzie JE, Bossuyt PM, et al. The prisma 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n71.
- 12. Booth A, Clarke M, Dooley G, et al. The nuts and bolts of PROSPERO: an international prospective register of systematic reviews. *Syst Rev.* 2012;1:2.
- Biesecker BB, Ishibe N, Hadley DW, et al. Psychosocial factors predicting BRCA1/BRCA2 testing decisions in members of hereditary breast and ovarian cancer families. Am J Med Genet. 2000;93:257–263.
- Blandy C, Chabal F, Stoppa-Lyonnet D, et al. Testing participation in BRCA1/2-positive families: initiator role of index cases. Genet Test. 2003;7:225–233.
- 15. Bodd TL, Reichelt J, Heimdal K, et al. Uptake of BRCA1 genetic testing in adult sisters and daughters of known mutation carriers in Norway. *J Genet Couns*. 2003;12:405–417.
- 16. Brooks L, Lennard F, Shenton A, et al. BRCA1/2 predictive testing: a study of uptake in two centres. *Eur J Hum Genet*. 2004;12:654–662.
- 17. Cody N, Green A, McDevitt T, et al. Cascade screening in BRCA1/2 mutation carriers. *Ir Med J.* 2008;101:140–142.
- Gauna Cristaldo FB, Touzani R, Apostolidis T, et al. Uptake of genetic counseling among adult children of BRCA1/2 mutation carriers in France. *Psychooncology*. 2019;28:1894–1900.
- Donenberg T, George S, Ali J, et al. A clinically structured and partnered approach to genetic testing in Trinidadian women with breast cancer and their families. *Breast Cancer Res Treat*. 2019;174:469–477.
- Evans DG, Binchy A, Shenton A, et al. Comparison of proactive and usual approaches to offering predictive testing for BRCA1/2 mutations in unaffected relatives. *Clin Genet*. 2009; 75:124–132.
- Fehniger J, Lin F, Beattie MS, et al. Family communication of BRCA1/2 results and family uptake of BRCA1/2 testing in a diverse population of BRCA1/2 carriers. *J Genet Couns*. 2013; 22:603–612.
- Finlay E, Stopfer JE, Burlingame E, et al. Factors determining dissemination of results and uptake of genetic testing in families with known BRCA1/2 mutations. *Genet Test.* 2008;12:81–91.
- Fischer C, Engel C, Sutter C, et al. BRCA1/2 testing: uptake, phenocopies, and strategies to improve detection rates in initially negative families. *Clin Genet*. 2012;82:478–483.
- Holloway SM, Bernhard B, Campbell H, et al. Uptake of testing for BRCA1/2 mutations in South East Scotland. Eur J Hum Genet. 2008;16:906–912.
- Jeong GW, Shin W, Lee DO, et al. Uptake of family-specific mutation genetic testing among relatives of patients with ovarian cancer with BRCA1 or BRCA2 mutation. Cancer Res Treat. 2021;53:207–211.
- Julian-Reynier C, Sobol H, Sevilla C, et al. Uptake of hereditary breast/ovarian cancer genetic testing in a French national sample of BRCA1 families. The French Cancer Genetic Network. *Psychooncology*. 2000;9:504–510.

- Lerman C, Narod S, Schulman K, et al. BRCA1 testing in families with hereditary breast-ovarian cancer. A prospective study of patient decision making and outcomes. *JAMA*. 1996; 275:1885–1892.
- Lieberman S, Lahad A, Tomer A, et al. Familial communication and cascade testing among relatives of BRCA population screening participants. Genet Med. 2018;20: 1446–1454
- Lynch HT, Snyder CL, Lynch JF, et al. Family information service participation increases the rates of mutation testing among members of families with BRCA1/2 mutations. *Breast J*. 2009;15(suppl 1):S20–S24.
- McGivern B, Everett J, Yager GG, et al. Family communication about positive BRCA1 and BRCA2 genetic test results. *Genet Med.* 2004;6:503–509.
- McInerney-Leo A, Biesecker BB, Hadley DW, et al. BRCA1/2 testing in hereditary breast and ovarian cancer families: effectiveness of problem-solving training as a counseling intervention. Am J Med Genet A. 2004;130A:221–227.
- Meijers-Heijboer EJ, Verhoog LC, Brekelmans CT, et al. Presymptomatic DNA testing and prophylactic surgery in families with a BRCA1 or BRCA2 mutation. *Lancet*. 2000;355: 2015–2020.
- 33. Menko FH, Jeanson KN, Bleiker EMA, et al. The uptake of predictive DNA testing in 40 families with a pathogenic BRCA1/BRCA2 variant. An evaluation of the probandmediated procedure. Eur J Hum Genet. 2020;28:1020–1027.
- Reichelt JG, Dahl AA, Heimdal K, et al. Uptake of genetic testing and pre-test levels of mental distress in Norwegian families with known BRCA1 mutations. *Dis Markers*. 1999;15: 139–143.
- Sanz J, Ramon y Cajal T, Torres A, et al. Uptake of predictive testing among relatives of BRCA1 and BRCA2 families: a multicenter study in northeastern Spain. Fam Cancer. 2010;9: 297–304.
- Samadder NJ, Riegert-Johnson D, Boardman L, et al. Comparison of universal genetic testing vs guideline-directed targeted testing for patients with hereditary cancer syndrome. *JAMA Oncol.* 2021;7:230–237.
- 37. Schmidlen TJ, Bristow SL, Hatchell KE, et al. The impact of proband indication for genetic testing on the uptake of cascade testing among relatives. *Front Genet*. 2022;13:867226.
- Sermijn E, Delesie L, Deschepper E, et al. The impact of an interventional counselling procedure in families with a BRCA1/2 gene mutation: efficacy and safety. Fam Cancer. 2016;15: 155–162.
- Trottier M, Lunn J, Butler R, et al. Strategies for recruitment of relatives of BRCA mutation carriers to a genetic testing program in the Bahamas. Clin Genet. 2015;88:182–186.
- Yoon SY, Thong MK, Taib NA, et al. Genetic counseling for patients and families with hereditary breast and ovarian cancer in a developing Asian country: an observational descriptive study. Fam Cancer. 2011;10:199–205.
- 41. Sarki M, Ming C, Aissaoui S, et al. Intention to inform relatives, rates of cascade testing, and preference for patientmediated communication in families concerned with hereditary breast and ovarian cancer and lynch syndrome: the swiss cascade cohort. *Cancers (Basel)*. 2022;14:1636.
- Nash Z, Menon U. Ovarian cancer screening: current status and future directions. Best Pract Res Clin Obstet Gynaecol. 2020;65:32–45.
- Offit K, Tkachuk KA, Stadler ZK, et al. Cascading after peridiagnostic cancer genetic testing: an alternative to population-based screening. *J Clin Oncol.* 2020;38:1398–1408.
- Ahsan MD, Levi SR, Webster EM, et al. Do people with hereditary cancer syndromes inform their at-risk relatives? A systematic review and meta-analysis. PEC Innov. 2023;2: 100138.
- Kahn RM, Ahsan MD, Chapman-Davis E, et al. Barriers to completion of cascade genetic testing: how can we improve the uptake of testing for hereditary breast and ovarian cancer syndrome? Fam Cancer. 2023;22:127–133.

- Whitaker KD, Obeid E, Daly MB, et al. Cascade genetic testing for hereditary cancer risk: an underutilized tool for cancer prevention. *JCO Precis Oncol.* 2021;5:1387–1396.
- 47. Rauscher EA, Dean M, Campbell-Salome GM. "I am uncertain about what my uncertainty even is": men's uncertainty and information management of their brca-related cancer risks. *J Genet Couns*. 2018;27:1417–1427.
- 48. Dean M, Campbell-Salome G, Rauscher EA. Engaging men with brea-related cancer risks: practical advice for brea risk
- management from male stakeholders. Am J Mens Health. 2020; 14:1557988320924932.
- Frey MK, Kahn RM, Chapman-Davis E, et al. Prospective feasibility trial of a novel strategy of facilitated cascade genetic testing using telephone counseling. *J Clin Oncol*. 2020;38: 1389–1397.
- Ahsan MD, Webster EM, Nguyen NT, et al. Underrepresentation of racial and ethnic minorities in cascade testing for hereditary cancer syndromes. Eur J Hum Genet. 2023;31:723–724.